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The Electroencephalogram (EEG) is often used in the neuroergonomics field as a means of studying the 

brain at work, with a relatively low cost and high portability. EEG data offers the capability to investigate 

a user’s brain signals as they interact with their environment in either a work or natural setting, and has 

been used in applications from attention-based spellers (Li et al., 2010) to robotic system control (Huang 

et al., 2019). In neuroergonomics, it's important to interpret the user’s affective state while they interact 

with the system/tech/environment, however due to the nature of EEG, data is often noisy and difficult to 

process. Traditional strategies use machine learning classifiers such as Linear Discriminant Analysis (LDA) 

or Support Vector Machines (SCM) which require significant pre-processing to prepare the signal before 

the classifier can make use of it (Lotte et al., 2018). Deep learning models have shown the potential to 

process raw EEG data, bypassing the significant amounts of preprocessing required to use those traditional 

strategies (Craik et al., 2019). The EEGNet model has found success as a generalized model capable of 

performing well in a variety of classification tasks (Lawhern et al., 2018). In previous work, we proposed a 

modification of the EEGNet model, with two primary changes: a 3D data representation and a multi-branch 

structure. In the original EEGNet, a 2D input shape (described as Channels x Timesteps) of EEG data was 

used, however this method lacks the ability to inform the model of the spatial relationship of EEG channels 

and their positions across the scalp. In the case of 3D EEG data input, a spatially relevant layout of EEG 

channels is used, allowing the model to better understand the spatial relationship amongst channels. This 

3D input method has been found to improve the accuracy of deep learning classifiers (Wei et al., 2018). 

The second change is to implement a multibranched model structure with varying receptive field sizes. 

This method allows for each branch to extract different sized features from the model by examining the 

data through differently sized temporal “eyes” (Liu and Yang, 2021). This combined 3D multibranched 

model has been tested by Zhao et al. (2019) and our group, and was found to achieve accuracy of 75% on 

the BCI Competition IV 2a dataset. Notably, all testing of this architecture has been regarding motor 

imagery, an EEG task paradigm more aimed at disabled persons. We sought to test how the modified 

version of EEGNet performs in classifying emotional states from EEG data. Ideally, this architecture will 

inherit some of the reported generalizability across paradigms from the original EEGNet, and function as 

a decoding tool able to be used in the Neuroergonomics field to better understand the affective state of a 

user as they perform tasks. 

This paper takes a 3D multibranched variation of the EEGNet model and applies it to the SEED IV dataset 

to classify four possible emotional states from EEG data. The dataset is preprocessed using similar methods 

described in Zhao et al. (2019). First, we reorganized the data into a 3D representation, with the first 2 

dimensions describing a spatial representation of EEG channels according to the international 10-20 

system, with the 3rd dimension being time. Next, a cropped strategy is applied to the dataset, a common 

strategy of data augmentation used when data is insufficient for training purposes. This approach is 

capable of transforming a dataset containing 72 trials per individual to 3600 data samples per individual. 

This data is then normalized using a channelwise averaging method, after which it is shuffled. This data is 

then used to train the model over a course of 100 epochs with a batch size of 50.  



In Table 1, the suggested model structure can be observed, with each receptive field labeled as small 

receptive field (SRF), medium receptive field (MRF), and large receptive field (LRF). In Figure 1, initial 

findings can be found regarding model accuracy. The figure demonstrates that the model achieves 

performance on par with the state-of-the-art classification methods used. Each accuracy value is found 

through a 5-fold cross validation metric. For a comparison of performance, Liu et al. (2021) summarized 

several methods of emotion classification and reported that their method (DCCA) was able to achieve a 

mean accuracy of 87.5%. The performance of our approach then is very competitive, achieving a mean 

accuracy of 83.13%.  If we were to exclude subjects 1 and 5, whose classification accuracies across all 

conditions can be seen as outliers in Figure 1, this mean accuracy increases to 90.30%. Unfortunately, we 

have not yet been able to determine the cause of these two subjects’ outlier statuses, however we find 

both accuracy values to be very competitive. We believe that this validates our method as an approach to 

EEG emotion classification using a 3D multibranched EEGNet variation, supporting the use of both 3D input 

data and the multibranch CNN technique. 

Our model offers a high-performance tool for neuroergonomics researchers that allows for them to make 

more informed decisions throughout studies and have better insight into an individual’s state-of-mind 

throughout a task. The accuracy of the model makes it a valid choice in research settings, given that we 

can reliably predict an individual’s emotional state with 80-90% accuracy, a result better than many current 

state-of-the-art methods. For example, our model would allow for more accurate understanding of an 

individual’s emotional reaction to a task, assisting with studies like the one performed by Sargent et al. 

(2020), where they tracked an individual’s emotional response throughout the preparation and 

consumption of coffee. We believe that the documentation and work that has gone into this project will 

make the use of EEG in neuroergonomics studies more accessible, even to researchers without a significant 

background in machine learning. 

As a final note, all code used in this study can be found in the GitHub repository below, as a significant goal 

of this project is to allow for others to reproduce these results and apply the model and ideas within to 

their own projects, without having to recreate all from scratch. 

https://github.com/matt-houk/MB3DCNN 
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Figure 1. The results of a 5-fold cross validation analysis of each subject’s data. Subjects 1 and 5 are clear outliers, with 
consistently lower performance, so average model accuracy has been presented with and without these subjects. 

https://github.com/matt-houk/MB3DCNN
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Table 1. The 3D Multibranched Model structure, based on the EEGNet architecture. 
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