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Background 
 A spacewalk, or extravehicular activity (EVA), is one of the most mission critical and physically 
and cognitively challenging tasks that crewmembers complete. As Scott Kelly stated, reflecting on EVA 
during his yearlong mission onboard the International Space Station (ISS), “The focus required to do even 
simple work in space is daunting” (Kelly, 2017). On the ISS, Earth mission control provides significant, 
real-time decision support to crewmembers during EVA. With next-generation missions to the Moon and 
Mars, exploration EVA will challenge crewmembers in partial gravity environments with increased 
frequency, duration, and autonomy of operations. Given the distance from Earth, associated 
communication delays, and durations of these exploration missions, there is a monumental shift in 
responsibility and authority taking place in spaceflight; one that is moving from Earth-dependent to crew 
self-reliant (Caldwell, 2000; Feigh & Pritchett, 2014; Miller & Feigh, 2019).  
 For the safety, efficacy, and efficiency of future exploration EVAs, there is a need to better 
understand crew health and performance, particularly for surface operations. With this knowledge, 
technology and operations can be designed to better support future crew autonomy. As opposed to 
measuring cognitive workload using surveys or performance metrics, psychophysiological monitoring 
offers the benefit of objective, passive, and continuous quantification of crew state. The objective of this 
work was to develop a predictive model to classify cognitive workload using psychophysiological sensing 
during an operationally relevant EVA task. This work tested the limits of extending cognitive state 
modeling to a novel virtual reality (VR) task, using commercial wearable devices.  
Methods 
 A sensor suite of commercial wearable devices, including the InteraXon Muse, the Empatica E4, 
and the Zephyr BioHarness, was selected to stream and record physiological signals in a human research 
study at NASA Johnson Space Center. Electroencephalography (EEG) data from the Muse was 
preprocessed using EEGLAB with Artifact Subspace Reconstruction (ASR) and Independent Component 
Analysis (ICA)(Delorme & Makeig, 2004; Laiti, Wusk, & Gabler, 2021). Custom MATLAB scripts extracted 
162 time-synchronized psychophysiological features including EEG bandpowers, heart rate, heart rate 
variability, breathing rate, breathing variability, tonic and phasic skin conductance, skin temperature, and 
estimated blood pressure from pulse arrival and pulse transit time. Supervised machine learning with the 
K-Nearest Neighbor (KNN) algorithm was used to recognize patterns in psychophysiological features to 
predict crew state. Participant-independent models, trained on all participants, were compared to 
participant-specific models. The datasets were also subset by device to assess the predictive value of 
each of the wearables. The training data underwent ten-fold cross-validation repeated five times, and 
the k hyperparameter was tuned with a grid search from two to ten. All features were scaled and 
centered in the modeling process, and zero variance and near zero variance features were removed. 
Feature importance was assessed using distance measures from the KNN models.  

Teaching a machine learning model to recognize crew state is not trivial as it is difficult to define 
“ground-truth” cognitive workload, especially in operational settings. The novel VR Translation Task was 
developed to control and quantify cognitive demands during an immersive, ambulatory EVA scenario 
(Wusk, Laiti, Gabler, & Abercromby, 2021). Participants walked on a passive treadmill while wearing a VR 
headset to move along a virtual lunar surface with constraints on time and simulated resources (Figure 
1). During the Translation Task, a heads-up-display projected through the VR headset allowed the 
participants to monitor systems, such as red and green indicator lights, and manage simulated oxygen 



capacity. Additionally, they were responsible for identifying and recalling waypoints, flags with specific 
color-patterns, in the scene. Two configurations of the Translation Task were designed to simulate high 
and low cognitive workload conditions by varying the frequency and complexity of the system 
monitoring, resource management, and communication subtasks. Prior to applying any 
psychophysiological monitoring to the task, the cognitive workload was quantitively assessed using 
embedded performance metrics, including reaction times, and subjective surveys, including the NASA 
Task Load Index (TLX). Eight participants completed the high and low cognitive workload configurations 
of the Translation Task and the benchmark, Multi-Attribute Task Battery (MATB), while wearing the 
sensor suite. The MATB is a desktop cognitive battery developed by NASA Langley Research Center and 
has been used in previous studies to train predictive cognitive state models (Comstock & Arnegard, 1992; 
Harrivel et al., 2016, 2017; Wilson & Russell, 2003).  
 

 

Figure 1. VR Translation Task. 

Results 
 The results of the Translation Task confirmed the high cognitive workload corresponded to 
inferior performance and higher subjective survey ratings. During the high workload simulations, 
participants substantially overused their simulated oxygen resources by walking too fast, identified and 
recalled more waypoints incorrectly with slower responses, and had more variable reaction times to 
green indicator lights (1.5 ± 1.1 s in low workload, 3.1 ± 1.9 s in high workload). Participant-specific 
(boxplots in Figure 2) and participant-independent (triangles in Figure 2) models were able to distinguish 
between the high and low workload configurations of the Translation Task with 99-100% accuracy when 
features from all of the wearable devices were included. However, there are limitations on the 
generalizability of these results. The classification accuracies were much lower when trained on the 
MATB data and applied to Translation Task data. There was limited improvement from additional 
normalization and dimension reduction. Trained to recognize high and low workload during the seated 
MATB tasks, the best model was able to predict the workload configuration of the Translation Task with 
only 66% accuracy.  
 

   

Figure 2. Classification accuracies for models by wearable device when trained within-task. 



Discussion 
 The contributions of this work span the simulation, characterization, and modeling of cognitive 
state in more realistic settings and scenarios. This work focused on developing the Translation Task, 
including procedures, performance metrics, and machine learning models. It is part of a larger effort at 
NASA to assess physiology and performance during an entire VR EVA scenario. The high classification 
accuracies within the task illustrate the potential predictive power for future laboratory and field studies 
of cognitive workload using wearable devices. With the machine learning models, which were trained to 
recognize similarities in the psychophysiological feature sets, there is limited interpretability, and it is 
difficult to say if the models were detecting differences due to cognitive workload or other factors (i.e. 
physical workload, sensor signal quality, etc.). Ideally, a cognitive state model could be trained on a 
seated, benchmark task and tested on an operational task. However, additional work is required to 
generalize results across tasks by improving signal reliability and model robustness. Ultimately, this work 
paves the way for future real-time implementation to close the loop between human and automation. 
The predictions could be used to determine the psychological state of a crewmember performing an 
EVA. With knowledge of crew cognitive state, systems could appropriately support the crew by 
automatically providing feedback and assistance. 
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