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Traffic accidents, which are a leading cause of injury and death, are often induced by underestimation of 

driver’ cognitive workload (CW) and fatigue (Kajiwara, 2014). Hence, predicting such states could be 

fundamental to prevent traffic accidents. Quantitative assessment of CW can be performed by means of 

neuroimaging and neurophysiological techniques and methods (Aghajani et al., 2017). However, their 

limitations in real life driving (contact probes, high sensitivity to driver’s motion) prevent their large use in 

driver assistance systems (ADAS).  

Infrared Thermography imaging (IRT) has been proposed as suitable alternative tool to infer CW in a 

contactless and ubiquitous manner. IRT is a non-invasive technology sensitive to the neurovegetative 

modulation of cutaneous temperature (Cardone and Merla, 2017). IRT capability to estimate CW has been 

investigated so far and compared with standard Electroencephalography (EEG) (Wang et al., 2019a), which 

is considered a gold standard technique for inferring brain activity. Particularly, the EEG β-band power  

increases when high CW occurs (Matthews et al., 2017).  

In this work, a Support Vector Machine (SVM) regression was implemented to estimate the EEG β-band 

power from IRT features. Then, a Receiver Operating Curve (ROC) analysis was performed on the predicted 

CW to infer high or low CW, defined through a median split approach of the EEG β-band power. To the 

best of our knowledge, this study is the first attempt to evaluate CW through IRT as it is defined by the 

EEG β-band power in automotive. 

The method was tested on 10 volunteers (6 males, age range 22–35 years, mean 28.4 years) performing 

cognitive tasks (i.e. Digit Span and Rey Auditory Verbal Learning test) while driving over an urban context 

on a static driving simulator. The administration of cognitive tasks allowed to manipulate the CW with 

respect to the baseline driving.  The driving context was displayed on three 27-inches monitors with 1920 

x 1080 pixels resolution. The distance between the driver and the monitors was set at 1.5 meters and the 

driver's horizontal view angle was 150 degrees. The software used for driving simulation was City Car 

Driving, Home Edition software (version 1.5) (Cardone et al., 2020a). The driving conditions were set a 

priori to ensure adverse driving condition and uniformity across the subjects (Cardone et al., 2020a). 

During the driving, the driver’s facial temperature was acquired by using a FLIR Boson 320LW IR thermal 

camera optically co-registered with an Intel RealSense D415 camera. Both visible and IR videos were 

acquired at a sample frequency of 10 Hz. EEG was acquired through g.HIamp biosignal amplifier (g.tec 

medical engineering). The amplifier was able to acquire 19 channels at a sample frequency of 256 Hz. 

Concerning IRT data analysis, visible videos were used to track facial landmarks (68 points) by means of 

OpenFace (Baltrušaitis et al., 2016), and, then, they were co-registered to the thermal videos by estimating 

the geometrical transformation between the visible and the IRT optics (Cardone et al., 2020b). Three 

Regions of interest (ROIs) were automatically determined on facial areas of physiological importance (i.e. 

nose tip and glabella) (Ioannou et al., 2014). For each ROI, the average value of the pixels was extracted 

over time and representative features (i.e. mean value, standard deviation, kurtosis, skewness, mean of 



the first 5 s – mean of the last 5 s, power content in the respiratory and myogenic band) were computed 

over consecutive temporal windows of 30 seconds (339 temporal windows were obtained among subjects). 

For the EEG data analysis, saturated or corrupted epochs were rejected by visual inspection. Moreover, an 

automatic procedure based on Independent Component Analysis was applied to remove physiological 

artifacts (Croce et al., 2018). Data were then band-pass filtered between 0.1 and 80 Hz with a 2nd order, 

zero-lag, Butterworth digital filter. Brain activity during the driving was estimated through the Power 

Spectral Densities (PSDs) evaluated through of Welch’s method (2 s intervals, frequency resolution of 0.5 

Hz) in the β-band power (15–25 Hz frequency ranges). An SVM with a linear kernel was employed to predict 

CW relying on normalized (z-score) features extracted from IRT signals. The generalization capabilities of 

the procedure were investigated employing a leave-one-subject-out cross-validation procedure. The 

performances of the classifier were tested on the out-of-training-sample prediction of CW by means of 

ROC analysis. 

The SVM procedure delivered a regression with a correlation coefficient of 0.38 (p<0.001) and ROC analysis 

showed a good performance of the classifier with an average AUC of 0.67 (Figure 1). Notably, although the 

median split approach could provide information regarding the participants’ CW, individual differences 

could occur. For this reason, in previous studies the classification of CW was conducted within each subject 

(Wang et al., 2019b). The findings of this study indeed deliver more generalizable results. Importantly, it 

should be highlighted that the CW evaluated in this study is mainly related to non-driving tasks rather than 

to a complex driving condition. 

These findings might be related to modification of the facial superficial circulation associate to CW 

(Perpetuini et al., 2021). Moreover, the contribution of the feature related to the respiratory band in the 

CW estimation suggests a relation between the modulations of the breathing rate and the CW.  

Although preliminary, these results demonstrate the feasibility to estimate the CW as evaluated by the 

EEG β-band power from thermal features. However, further studies with larger study samples are needed 

to corroborate these findings. In fact, a larger sample size would allow to employ non-linear and more 

complex machine learning approaches probably increasing the classification performance.  

 
Figure 1. ROC curve delivered classifying low and high MW from the ML approach relying on the EEG β-band 
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