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Unlike in many robotic applications that require complete autonomous operation (Eich et al. 2010 and 
Aggarval et al. 2015), in human-robotic interaction systems effects of robots on the work environment 
become more and more relevant. Solutions must be found to reduce physical stress, but mental stress has 
to be studied to improve ergonomics. For this purpose, methods must be developed to continuously detect 
cognitive load (Kirchner et al. 2016, Neu et al. 2018). In the KAMeri project, we focus on improving 
occupational safety by analyzing the human’s electroencephalogram (EEG) and adapting human-machine 
interaction according to a worker’s cognitive state. Safety-relevant mental states such as fatigue and 
workload are detected to adjust the robot’s behavior. We present results on the data quality of a tailor-
developed headset for EEG recording with dry electrodes and on our training classifiers within established 
psychophysiological paradigms to continuously detect different mental states.  

Neuroergonomics is defined as “the study of the human brain in relation to performance at work and 
everyday settings” (Parasuraman, 2003). Never-ending open questions are easiness of use and comfort 
issues (Gramann et al., 2017). We developed a headset that is possible to put on with just one movement, 
with twenty-four dry electrodes (Fiedler et al. 2015), including ground (GND) and reference (REF), so that 
the setup time is less than 10 seconds. To improve the comfort, we considered different head shapes 
(Lacko et al., 2017) and optimal pressure between electrodes and scalp (Fiedler et al. 2018). In this line, 
we have created a pipeline that: 1. creates an individual mesh from a subject’s head; 2. finds the individual 
10/10 position (Oostenveld et al.,2001); 3. adapts the model of the headset to these positions. Every 
electrode is positioned by an arch that adapts its pressure at the proper force (see Fig. 1). One EEG headset 
was built up to fit one test person. We tested the headset with the subject it was made for (subject S1), a 
subject with a similar head size and shape (S2), one with a larger head (S3), and two subjects with smaller 
head sizes and different shapes (S4 and S5). 

To test the data quality, we used a previously developed scenario where the subjects were asked to 
respond to target stimuli presented in an oddball fashion with a buzzer press for single-trial detection of 
P300 (Ghaderi et al., 2014) and the lateralized readiness potential (LRP) detected before the buzzer 
response (Kirchner et al., 2014). We compared a gel-based 64-channel cap on six subjects versus the 
headset with dry electrodes on S1 and S2 (see the outcomes of the recordings below). We were able to 
reach a balanced accuracy (BA) (Straube et al. 2011) of 0.938 ± 0.019 BA with the gel cap (Ghaderi et al., 
2014), while we had a BA of 0.826 for subject S1 and a BA of 0.882 for subject S2 using the same amount 
of training data and the same preprocessing flow as in Ghaderi et al., 2014. Furthermore, with the gel-
based cap, the LRP had a BA of 0,935 ± 0,036 (Kirchner et al., 2014), while with the headset, 0.895 BA for 
S1 and 0.91 BA for S2. 



To train the classifiers to detect specific mental conditions, we chose some psychophysical paradigms 
(Gevin et al.1979) relevant in our application: N-back task (N= 1,2, and 3) (Kirchner 1958), mental rotation 
task (time limit: 20 s, 10 s, and 3 s) (Shepard and Metzler 1971), mental calculation task (10 s time limit; 
addition and subtraction: 1-digit, 2-digit, and 3-digit numbers), and, at the end of each of the three trials 
with increasing cognitive effort, a Stroop task (Stroop 1935) to detect effects of fatigue on attention. As 
ground truth for mental load, subjects filled in the NASA task load index (NASA-TLX) (Hart and Staveland 
1988) after each run.  

Other studies (Keirn and Aunon, 1990) used spectral EEG parameters to distinguish between mental tasks. 
We adopted an overlapping 3s windows to calculate the PSD for each of the 22 EEG channels to generate 
Gradient Boosting regression/classification features. For preprocessing, the data were down sampled to 
160Hz and bandpass filtered between 0.1 and 40Hz. As a target, we used the mean across the NASA-TLX 
scales. 

During the one-hour data acquisition, we had to stop recording subject S3 after 20 minutes due to pain 
from the pressure. For all other subjects, EEGs were recorded entirely. Manual inspection of the data 
showed that no clean EEG was recorded for subjects S4 and S5. The pressure of the dry electrodes on the 
scalp was too low.  

In summary, a simple and fast method to acquire a good EEG signal quality could be achieved using a 
custom-made headset with dry electrodes. It can easily be placed by the subject itself. The headset, when 
it fits well, can be worn easily for at least two hours. The customized approach looks promising for helping 
in reaching the balance between easiness and quality of data. The performance in single-trial P300 and 
LRP detection was very close to the 64 wet electrodes, even using only 24 dry electrodes, including REF 
and GND. As a preliminary result, we could show that NASA-TLX values partially correlate with the 
workload estimated from the EEGs (results in Figure 2 A and B based on EEGs from subjects S1 and S2). 
Further, the level of difficulty of the Stroop data sets could be predicted with very high precision (see 
Figure 2 C), suggesting that the level of fatigue could be classified from the EEG. Next, we will record more 
data and test our approach to detect mental load in everyday work activities, e.g., working on a PC, talking 
to other people, looking at complicated CAD construction, or controlling a device. Finally, we will compare 
the results recorded with the dry electrode headset with EEG data recorded with gel-electrodes for the 
same subjects.  

   



Figure 1: A: Headset design with integrated dry electrodes; B: Electrode layout. 

  

Figure 2: A/B: Subject vs. Subject results for the workload estimation all sets concatenated. Orange: Target, Blue: Single 
prediction, Red: 30s Moving Average. C: Fatigue classification performance during Stroop Test based on predicting the 
corresponding set. 
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