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Introduction and Goal 

Turning through oncoming traffic at unsignalized intersections can lead to safety-critical situations 

contributing to 7.4% of all non-severe vehicle crashes [Harding, 2014]. An important reason for these 

crashes are human errors in the form of incorrect estimation of the gap size with respect to the oncoming 

vehicle. Human intention prediction could help reduce the frequency of these safety -critical situations by 

predicting dangerous turning manoeuvres in advance. Turning behaviour at intersections has been 

investigated and modelled by several researchers over the past decades (e.g. [Ragland, 2006][Yan, 2007]). 

Though most research focused on demographic and contextual information, like the gap size in the stream 

of oncoming vehicles as predictors for the turning intention, [Damm, 2019] presented a case study for how 

the combination of neurophysiological sensors and contextual information could be used to predict and 

reflect in low-level control the human’s turning intention to improve safety of turning manoeuvres. The 

aim of the current study was to enhance the accuracy of the underlying intention prediction beyond that 

first case-study. It addresses more thoroughly the creation of a turning intention model based on the 

combination of neurophysiological whole-head fNIRS brain activation measurements and contextual 

information about the traffic situation recorded during a driving simulator study. We show how the 

inclusion of fNIRS measurements can increase the performance of such a model in comparison to a 

context-only intention prediction model. 

Methods and Data Analyses 

We presented the participants of the driving simulator study with a cover story that they are driving in a 
time-critical situation through urban traffic. On their way through the simulated scenario, participants 

were repeatedly confronted with left-lane merging situations at unsignalized intersections where they had 

to wait and then decide when to make a turn through an oncoming stream of vehicles.  The data used for 

the modelling procedure was the context information about the traffic situation recorded at these 

intersections along with whole-head fNIRS brain activation. During cross validation a principal component 

analysis was performed on the training set of the fNIRS data. The first principal component (PC1) has been 

shown to be linked to motion artifacts [Brigadoi et al., 2014], and was removed from further analysis. The 

PC explained on average 38% +- 20% of the variance in the respective data sets. We used a discrete 

Bayesian network to model the turning intention. Bayesian networks have been used widely in the 

modelling of brain activation measurements (e.g. [Burge, 2009][Yang, 2010][He, 2016]). A Bayesian 

network represents the joint probability distribution of its variables by an easy-to-understand graph 

structure. The Bayesian network fitted for the turning intention prediction consists of ten variables (s. Fig. 

1). The seven principal components (PC2-PC8) of the brain activation measurements which explain most 

variance were used as variables in the network. The seven PCs together explained on average 32% +- 16% 

of the variance. As contextual information, the gap sizes between consecutive cars and the number of cars 

already having been waited for were included. The tenth variable represents the merging intention. We 

used uniform discretization to discretize all variables into four groups except for the already binary turning 



intention variable. We calculated the accuracy and area-under-curve to evaluate the model. We fitted one 

model for each of the study participants and a 5-fold cross-validation was performed. We compare these 

performance metrics with respect to three different sets of evidences which are available for the inference. 

The three evidence sets are fNIRS-only, context-only, and a model with both.  

 

Figure 1. Structure of the Bayesian network for turning intention prediction. The variables can be separated into context (blue 
box) and brain activation (green box) related groups.  

Results 

We fitted one model for each of the 12 participants of the driving simulator study. Fig. 2 shows the 

accuracies (left) and area-under-curve (right) values for the three different evidence sets. The mean 

accuracies for the three models were 59%, 70% and 81% and the area-under-curve was 0.61, 0.78 and 

0.89, respectively. The model combining both fNIRS and context evidences performed best in both 

respects. The model using only context evidence shows a very high variance indicating a variability of 

subjective preferences regarding preferred gap sizes for turning maneuvers. 

 

Figure 2. One model for each of the 12 participants was fitted. The resulting distributions of accuracies (left) and area-under-

curve values (right) for the turning intention prediction models are displayed as boxplots. 



Discussion and Conclusion  

Our results show that the inclusion of brain activation measurements can help to improve the turning 

intention prediction by 11% with respect to the median accuracy of a simple context-based model, 

effectively reducing the error rate by a third. This result could be further investigated by performing a 

feature importance analysis, such as permutation feature importance or SHAP ( SHapley Additive 

exPlanations). Such an approach could show the importance and influence of each variable to the model’s 

output in more detail. In further work, we want to investigate which brain areas contribute most to the 

prediction using above mentioned feature importance analysis. Bayesian networks can be used to sample 

data and thus simulate data given a specific set of evidence. We want to harness this approach to have a 

more detailed look into safety-critical, rare cases for traffic manoeuvres like the turning manoeuvres 

investigated in this study. A possible safety gain provided by such a turning intention prediction could also 

be calculated as suggested in [Damm, 2019].  
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