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As autonomous agents get more integrated into our everyday lives, the need for sociable robots that can 

engage interactively with humans is increasing. For more sociable human-robot interactions, autonomous 

agents must obtain the appropriate social mechanisms that enable them to be more natural and intuitive 

with humans[1]. However, the social repertoire in today’s robots remains limited and has yet to deliver 

the expectations[2]. Therefore, integrating robots in human-robot interactions (HRI) as a social entity 

remains one of the biggest challenges in state-of-art HRI research[3]. For over two decades, HRI 

researchers have been analyzing human behavior while interacting with robots to find the factors that 

optimize the user-robot interaction. The most commonly employed methods in HRI studies are subjective 

self-reported measures such as questionnaires[4]. While these measures are easier to implement, they 

cannot capture the user’s behavior in the moment of interaction and can be dampened through the user’s 

social inhibition. Furthermore, even though neuroimaging methods (e.g. fMRI) have been previously 

utilized in HRI research[5], these methods are not feasible to use in unrestricted everyday life settings, 

specifically essential to understand real-world complex human-robot interaction, which contains 

requirements such as physical contact, non-verbal communication and affective expressions [6]. As a result, 

the understanding of human social behavior during human-robot interaction remains limited, more so in 

everyday real-world contexts[2], even though valuable insights from neuroscientific methods could likely 

be obtained[7].  

Social cognition in humans is defined as the perceptual, cognitive, and behavioral processes that are 

utilized in interpreting others’ flexible social behaviors to become adept in social interactions[8]. These 

processes include Theory of Mind, perception of self and others, socio-emotional processing, and mental 

attribution[9; 10]. Prior neuroimaging evidence discovered that the medial prefrontal cortex (mPFC) acts 

as a key area for the cortical network that regulates these social cognition processes in human-human 

interactions[11; 12; 13]. As an emerging neuroimaging technique, functional near-infrared spectroscopy 

(fNIRS) has gained more mobility and accessibility over the last decade[14; 15], and can be used for 

continuous recording in everyday settings, such as participants walking outdoors[16] and pilots in the 

cockpit flying an aircraft[17]. Therefore, fNIRS as a neurocognitive measure is well-suited to study the 

social interaction with robots and aligns well with the emerging field of neuroergonomics that aims to 

study the brain in everyday settings[18].  

In this study, we aim to assess the user’s social cognition in realistic human-robot interaction settings via 

neurocognitive measures using functional near-infrared spectroscopy. For this, we designed a study where 

participants talk and interact face-to-face with Pepper, a humanoid robot (SoftBank Robotics, Figure 1c) 

by collaborating on a series of naturalistic tasks (Figure 1a). As seen in Figure 1d, the experiment contains 

three sequential sessions in which the participant interacted robot. In each session, the robot reacted to 



the user’s responses in one of two ways: either by giving appropriate answers and carrying the interaction 

as smoothly as possible (congruent attitude); or with the robot making errors, repetitions, or illogical 

comments to the user’s responses (erroneous attitude). Each session lasted approximately 20 minutes and 

contained three tasks including 4 questions of rapport-building task, followed by 4 questions of island 

survival and 3 questions of save-the-art tasks[19]. In the rapport-building task, after exchanging 

introductions, Pepper and the participant made casual conversation by discussing hobbies, music, travel, 

etc. In the island survival task, the participant chose one of the three items which they thought was most 

fit for survival on the deserted island. After the selection of an item, Pepper suggested selecting one of the 

other two items with a reason and waited for a response from the participant for discussion. After the 

discussion, Pepper asked the participant whether they changed their decision. In the save-the-art task, the 

participant’s task was to rank five different paintings based on their preferences. After ranking, Pepper 

advised the participant to rank one lower-ranked painting higher and one higher-ranked painting lower, 

while expressing opinions about why the ranking should be changed, and let the participant respond. Then, 

Pepper asked the participants whether their ranking was changed or not after the discussion. 

Throughout the experiment, the hemodynamic activity over the prefrontal cortex was sampled at 10 Hz 

by fNIR Devices Model 2000S (Figure 1 a,b). For each participant, light intensity data were filtered with a 

100th order finite impulse response low-pass filter with a cut-off frequency of 0.1 Hz to attenuate the high-

frequency noise, respiration, and cardiac cycle effects[20]. Then, contamination from motion artifacts is 

mitigated by the sliding-window-motion-artifact-rejection (SMAR) method[21]. After SMAR, each 

participant’s data were manually inspected for removing any saturation remaining motion artifacts caused 

by head movement. Oxygenated(HbO) and deoxygenated(HbR) hemoglobin concentration changes for 

each optode were calculated from the processed light intensity data via the Modified Beer-Lambert Law 

and were averaged across time for each block. For statistical analysis, average HbO values in each question 

block were compared using linear mixed models with robot attitude (erroneous vs congruent) as an 

independent factor. 

For this study, we hypothesized that in terms of the hemodynamic response, there will be more brain 

activity over the mPFC in the congruent attitude condition compared to erroneous condition, as previous 

studies have shown that users’ perceived engagement towards the robot was higher when the robot 

demonstrated a congruent attitude[22], and mPFC activity was higher during human-human social 

interactions and collaborations[23; 24]. As shown in Figure 1e, the preliminary fNIRS results from 8 

participants revealed that the hemodynamic brain activity over the mPFC area was significantly higher 

during congruent attitude interaction compared to erroneous attitude. 

The preliminary results revealed that when robots are not erroneous, participants showed more activation 

in brain areas associated with social cognition, which shows consistency with our hypothesis. Albeit the 

small sample size, this study shows that the assessment of social cognition via neurocognitive measures is 

a promising approach to advance the HRI field by providing insights from human cognitive processes 

during unrestricted naturalistic human-robot interactions. These novel insights can benefit the design and 

development of more congruent and effective social mechanisms in robots in the future.  

 



 

 

Figure 1. (a) The experiment setup. (b) Detector-source pairs corresponding brain regions for fNIRS headband sensor, which has 16 
optodes and 4 LEDs that produces near-infrared light at wavelengths 730 and 850 nm.  (c) Pepper, the humanoid robot used in the 
study. (d) Overall experimental flow and procedure. (e) The preliminary fNIRS results for Robot Attitude condition. In the optodes 
that represent the mPFC, the brain activity is higher when participants interact with the robot with congruent attitude, specifically 
optode 7 (F1,250.1 = 5.79, p=0.017), optode 8 (F1,251.2 = 4.68, p=0.03) , optode 9 (F1,251.2 = 6.83, p<0.01) , optode 10 (F1,249.4 = 4.21, 
p=0.04) , optode 11 (F1,253.0 = 4.84, p=0.03) , optode 12 (F1,255.0 = 9.58, p<0.01). 
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