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ABSTRACT

Mental workload (MWL) is one of the key concepts in ergonomics and human factors for
understanding human performance, which can be affected by workload being too high or too
low (Holm et al., 2009). The automated warning or assisting system could help people prevent a
decline in MWL performance if it could be noticed in time (Holm et al., 2009). In this direction,
Electroencephalogram (EEG) has been used as a tool for evaluating MWL (van Erp et al., 2015).
To date, machine learning techniques, especially powerful models like deep learning, have been
employed to capture variance characteristics in the EEG signals to classify MWL status accurately
(Chakladar et al., 2020). This paper investigates the cross-validation procedure employed in
evaluating such models.

Cross-validation (CV) is one of the main techniques to train and test deep learning models
(Schaffer, 1993). In K-fold CV (Stone, 1974), an entire data set is divided into K equally-sized
subsets or folds. Then, a model is trained on K − 1 folds (called the training set), and the
remaining fold is used for model testing (called the testing set). To perform CV, the data should
meet the independent and identically distributed (i.i.d.) assumption, i.e. all observations have
been drawn from the same probability distribution and are statistically independent of each other
(Hoadley, 1971). However, an EEG signal is time-series data generated by a process over time.
Therefore, using traditional cross-validation for time-series model evaluation could be violating
the key i.i.d. assumption (Bergmeir and Benı́tez, 2012), particularly if the aim is to predict a future
event, such as the subject’s MWL. Moreover, the random shuffling before splitting data into K-fold,
a common practice in the machine learning area, could lead us to an unreliable classification
model performance (Cerqueira et al., 2020).

This is because, in time series data, the available past and present values is used to forecast
future values of X. To be more precise, the estimated value X̂t+τ of X at time t + τ can be
obtained from a function F where function F computed from given value of X up to time t, (plus
additional time-independent variables in multivariate time series analysis) X̂t+τ = F(Xt, Xt−1, ...)
where τ is the lag for prediction. Then, the function of continuous time series will be mapped onto
binary-valued of N classes for a classification approach: Fc(Xt, Xt−1, ...) → ĉi ∈ C where C is
the set of class labels (Dorffner, 1996). Hence, future information could be leak into a training
dataset when the cross-validation breaks the temporal order of time series data by randomly
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splitting. Consequently, it would cause an overfitting problem (Bergmeir and Benı́tez, 2012) in
model training. These problems extend to evaluating deep learning models on EEG Signals.

This paper proposes to use a modification of cross-validation techniques that takes into account
the time series characteristics of EEG signals. Several modifications of time series cross-validation
techniques have been proposed in the past (Bergmeir and Benı́tez, 2012; Bergmeir et al., 2014;
Cerqueira et al., 2020). Among these, a blocked form of cross-validation with a rolling window
has been shown to be an effective approach since the model will be rebuilt in every window,
discarding the old values that tend to disturb the model generation Bergmeir and Benı́tez (2012).
However, to the best of our knowledge, that technique has not been investigated in EEG analysis.
Figure 1 shows data being split into training, validation and testing set using the rolling window
approach. The previous window comprising n% of time t is used for training (Yellow box), the
following window of j% of time t is used for validation (Brown box) and the following window of
k% of time t is used for testing (Blue box). However, the research question to be investigated is
how to implement this method for EEG data and, in particular, “what should be the size of the
training, validation and testing window?”.

Figure 1. A 5-fold time-series CV with the rolling window size of 6.

To investigate this research question, we adopted the long short-term memory (LSTM) model,
which is one of the most well-known and widely used deep learning models to predict MWL level
(Nagabushanam et al., 2019; Jeong et al., 2019; Chakladar et al., 2020). This model has been
successfully used to capture sequential information in EEG data (Zhang et al., 2017). To train our
model, we used a publicly available mental workload dataset named STEW (Lim et al., 2018). We
performed the analysis in two classification tasks; Task 1: resting-state vs working state and Task
2: low vs moderate vs high MWL. In this study, we applied a 5-fold time-series CV with a rolling
window approach. There are two parameters to be optimised for the time-series CV, namely the
size of the training and testing window. We varied the training window size from 20% to 90% of
the data with an incremental step of 10%. The rolling window strategy is implemented by shifting
forward the training and test data at each fold by a constant window size of m seconds (s). The
test data of the previous fold will be used as a validation set for tuning the deep learning model’s
parameters. To investigate the effect of the test (and validation) window size, we varied the rolling
window size from 3 s to 24 s with an incremental step of 3 s.

Our results show that in Task 1, the LSTM model achieved the highest accuracy of 87.44% when
it was trained using 80% of data with a window size of 6 s for validation and testing. However,
in Task 2, the highest model accuracy of 88.79% was obtained when the model was trained by
using 90% of data with a window size of 3 seconds for validation and testing. This shows there is
not an optimal general training and test window size, and they need to be tuned when time-series
CV is being applied to train deep learning models, particularly for EEG signals to predict MWL.
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