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Introduction 

Near Infrared Spectroscopy (NIRS) is an optical neuroimaging modality which allows investigation of tissue 

oxygenation. It is widely utilized to measure cortical oxygenated and deoxygenated hemoglobin 

concentration changes [1]. With light sources and light detectors placed over the scalp, alterations in light 

intensities at different wavelengths are recorded, and converted to hemoglobin concentration changes 

via modified Beer-Lambert law (MBLL) [2]. Differential pathlength factor (DPF) is the ratio of mean optical 

pathlength the light travel within the tissue to the light source-detector separation distance, which is 

usually treated as a constant known a priori in MBLL [3]. Our previous study revealed DPF values are 

dependent on source-detector separations, and detector surface area affects the stability of DPF values. 

Such variability on DPF values may further lead to inaccurate estimation of hemoglobin concentration in 

NIRS measurements [3]. The first NIRS clinical studies on newborns and adult cerebrovascular patients 

were published in 1980s [4, 5]. Through the 1990s and later, the ability of NIRS in detecting intracranial 

hematomas marked the beginning of clinical application of NIRS for traumatic brain injury (TBI) [5-8]. As 

NIRS gets widely adopted in clinical studies to acquire accurate brain measurements, the choice of DPF 

values requires careful evaluation. Several methods have been developed to explain and estimate light 

propagation and DPF values in highly diffusive media such as human tissue. Monte Carlo (MC) simulation 

is a stochastics approximation model of Radiative Transfer Equation (RTE), which offers excellent accuracy 

when simulating photon propagation inside general complex media. Due to its flexibility and recent 

advances in computational speed, the MC method has been explored in tissue optics to solve both the 

forward and inverse problems in many studies [3, 9-20]. In this study, we investigated the contributing 

factors on DPF values, DPF values under clinical conditions using digital head models in MC simulations. 

Methods: 

A three-dimensional digital head model with four-layer slab geometry (150 x 150 x 60 mm3) was designed 

to monitor adult head with three separate clinical cases (intracranial hematoma, cerebral edema and 

perihematomal edema). The thickness of each layer was designed as: 3 mm of scalp, 7 mm of skull, 2 mm 

of cerebrospinal fluid (CSF), and 48 mm of brain tissue [21]. Lesion of each case was modeled as a 10-mm-

tall cylinder, and presented within the brain tissue layer, on the midline between source and detector, 

with increased radius (9.77 mm, 12.62 mm, 17.84 mm and 30.90 mm), resulting in 3 cc, 5 cc, 10 cc and 30 

cc lesion volumes. For perihematomal edema case, volume of blood to water is 1:1. Each lesion type and 



size was placed at different depths within the brain layer: 0.5 mm, 3 mm, 5.5 mm and 8 mm, resulting the 

lesion to skin surface being 12.5 mm, 15 mm, 17.5 mm and 20 mm (See Figure 1.a). Optical properties 

assigned to each tissue type for MC simulation were as shown in Table 1, corresponding to wavelength at 

830 nm [3, 22]. For each source-detector separation of 10 mm, 15 mm, 20 mm, 25 mm, 30 mm, 35 mm 

and 40 mm, 10 random simulations were conducted, 100 million photons were launched per simulation. 

Light detectors were modeled as a disk with a radius of 1.2 mm, based on previous investigation on 

detector surface area [3]. DPFs obtained from simulations under different conditions were compared to 

healthy condition and evaluated with various source-detector separations. 

Results: 

The MC simulated DPFs indicated that the DPF changes with the type of lesion (See Figure 1.b). Moreover, 

DPF values are lower than healthy for lesions such as intracranial hematoma and perihematomal edema. 

As the lesions presented at the same depth within the brain layer, but with increasing volumes, DPFs are 

getting much lower than healthy conditions. When the lesion volumes are the same, but presented at 

different depths in the brain, the closer the lesion to the light source, the smaller the DPFs. Results from 

cerebral edema simulations revealed a different pattern. Increasing the lesion volumes will lead to higher 

DPFs compared to healthy condition. As the edema presented deeper in the brain, DPFs are getting 

smaller. The difference in DPFs between clinical models and healthy conditions are more pronounced with 

larger source-detector separations.  

Discussion: 

The simulated DPFs from digital head models with various clinical conditions revealed that, in addition to 

the source-detector separation and detector surface area, DPFs are also dependent on the following 

factors: the depth of the lesion present in the brain, the volume size of the lesion, as well as the type of 

the lesion. Early investigation also indicated that DPFs are affected by wavelength and subject age [23]. 

With such a clear quantitative comparison on simulated DPFs, a more accurate DPF estimation can be 

performed to obtain more reliable hemoglobin concentration calculation for NIRS clinical studies. This 

quantitative analysis and DPF results highlight the potential to optimize optical brain imaging further by 

customizing the DPF in order to improve detection and monitoring of brain lesions in the future.  

 

 

Table 1. Tissue optical properties in clinical digital head phantom. Anisotropy g = 0.9, and refractive index n = 1.4 in 

all tissues. 

 Scalp Skull CSF Brain Blood Water 

µa(/mm) 0.0199 0.0141 0.0026 0.0193 0.72 0.0031 

µs(/mm) 6.47 8.43 0.1 10.88 6.49 0.1 

 

 



 

Figure 1. (a) Geometry of digital head model for MC simulation  

(b) Simulated DPFs of different lesion types at the same depth (12.5 mm to skin surface) in brain with the same 

lesion volume (10 cc). 
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